Penta-BxNy sheet: a density functional theory study of two-dimensional material
نویسندگان
چکیده
By using density functional theory with generalized gradient approximation, we have carried out detailed investigations of two-dimensional BxNy nanomaterials in the Cairo pentagonal tiling geometry fully composed of pentagons (penta-BxNy). Only penta-BN and BN2 planar structures are dynamically stable without imaginary modes in their phonon spectra. Their stabilities have been further evaluated by formation energy analysis, first-principles molecular dynamics simulation, and mechanical stability analysis. Penta-BN2 is superior to penta-BN in structural stability. Its stability analysis against oxidization and functional group adsorption as well as its synthesizing reaction path analysis show possibilities in fabricating penta-BN2 on experiment. Furthermore, the penta-BN2 could be transferred from metallic to semiconducting by ionizing or covalently binding an electron per dinitrogen. Also, it has been found to have superior mechanical properties, such as the negative Poisson's ratio and the comparable stiffness as that of hexagonal h-BN sheet. These studies on the stabilities, electronic properties, and mechanical properties suggest penta-BN2 as an attractive material to call for further studies on both theory and experiment.
منابع مشابه
A density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملA density functional study on the mechanical properties of metal-free two-dimensional polymer graphitic Carbon-Nitride
Successful synthesis of the stable metal-free two-dimensional polymer graphitic carbon-nitride with remarkable properties has made it as one of the most promising nanostructures in many novel nanodevices, especially photocatalytic ones. Understanding the mechanical properties of nanostructures is of crucial importance. Thus, this study employs density functional theory (DFT) to obtain the mecha...
متن کاملElectronic Properties of Hydrogen Adsorption on the Silicon- Substituted C20 Fullerenes: A Density Functional Theory Calculations
The B3LYP/6-31++G** density functional calculations were used to obtain minimum geometries and interaction energies between the molecular hydrogen and nanostructures of fullerenes, C20 (cage), C20 (bowl), C19Si (bowl, penta), C19Si (bowl, hexa). The H2 molecule is set as adsorbed in the distance of 3Å at vertical position from surface above the pentagonal and hexagonal sites of nanostructures. ...
متن کاملStudy of elastic and piezoelectric properties of two-dimensional hexagonal III-V binary compounds: First-principles calculations
In this work, using plane wave method in the framework of density-functional theory, we calculated clamped-ion and relaxed-ion elasticity, stress and strain piezoelectric independent coefficients for seven stable combinations of honeycomb monolayers XY (X:B,Al,Ga,In ; Y:N,P,As,Sb). The coefficients calculations by two methods of density functional perturbation theory (DFPT) and finite differenc...
متن کاملThe thermodynamic parameters derived material [1,5-b] tetrazolo [1,2,4] Terry inflorescences (TTA) with boron nitride nano- cages in different conditions of temperature , density functional theory method.
In this study the reaction of the derivative , material [1,5-b] tetrazolo [1,2,4] Terry inflorescences (TTA) with boron nitride nano- cages in different conditions of temperature , density functional theory methods were studied . For this purpose, the material on both sides were geometrically optimized reaction , then the calculation of the thermodynamic parameters were performed on all of th...
متن کامل